A Note on Certain Maximal Curves
نویسنده
چکیده
We characterize certain maximal curves over finite fields whose plane models are of Hurwitz type, namely xy +y +x = 0. We also consider maximal hyperelliptic curves of maximal genus. Finally, we discuss maximal curves of type y + y = x via Class Field Theory.
منابع مشابه
A note on superspecial and maximal curves
In this note we review a simple criterion, due to Ekedahl, for superspecial curves defined over finite fields.Using this we generalize and give some simple proofs for some well-known superspecial curves.
متن کاملOn the rank of certain parametrized elliptic curves
In this paper the family of elliptic curves over Q given by the equation Ep :Y2 = (X - p)3 + X3 + (X + p)3 where p is a prime number, is studied. Itis shown that the maximal rank of the elliptic curves is at most 3 and someconditions under which we have rank(Ep(Q)) = 0 or rank(Ep(Q)) = 1 orrank(Ep(Q))≥2 are given.
متن کاملA note on maximal non-prime ideals
The rings considered in this article are commutative with identity $1neq 0$. By a proper ideal of a ring $R$, we mean an ideal $I$ of $R$ such that $Ineq R$. We say that a proper ideal $I$ of a ring $R$ is a maximal non-prime ideal if $I$ is not a prime ideal of $R$ but any proper ideal $A$ of $R$ with $ Isubseteq A$ and $Ineq A$ is a prime ideal. That is, among all the proper ideals of $R$,...
متن کاملMAXIMAL PRYM VARIETY AND MAXIMAL MORPHISM
We investigated maximal Prym varieties on finite fields by attaining their upper bounds on the number of rational points. This concept gave us a motivation for defining a generalized definition of maximal curves i.e. maximal morphisms. By MAGMA, we give some non-trivial examples of maximal morphisms that results in non-trivial examples of maximal Prym varieties.
متن کاملOne-point Goppa Codes on Some Genus 3 Curves with Applications in Quantum Error-Correcting Codes
We investigate one-point algebraic geometric codes CL(D, G) associated to maximal curves recently characterized by Tafazolian and Torres given by the affine equation yl = f(x), where f(x) is a separable polynomial of degree r relatively prime to l. We mainly focus on the curve y4 = x3 +x and Picard curves given by the equations y3 = x4-x and y3 = x4 -1. As a result, we obtain exact value of min...
متن کامل